
Errata for

Python and Algorithmic Thinking

for the Complete Beginner
Second Edition

5.2 What is a Constant?

Read
priceA, priceB, priceC

Start

vat_A ← priceA * 20 / 100
vat_B ← priceB * 20 / 100
vat_C ← priceC * 20 / 100

Write
vat_A, vat_B, vat_C

End

Figure 5–1 Calculating the 20% VAT for three products without the use of a constant

Read
priceA, priceB, priceC

Start

vat_A ← priceA * vat
vat_B ← priceB * vat
vat_C ← priceC * vat

Write
vat_A, vat_B, vat_C

End

vat ← 20 / 100

Figure 5–2 Calculating the 20% VAT for three products using a variable, vat

Read
priceA, priceB, priceC

Start

vat_A ← priceA * VAT
vat_B ← priceB * VAT
vat_C ← priceC * VAT

Write
vat_A, vat_B, vat_C

End

VAT = 0.20

Figure 5-3 Calculating the 20% VAT for three products using a constant, VAT

7.8 Review Exercises
3. Match each element from the first column with one element from the second column.

Operation Result

i. 1 / 2.0 a. 100

ii. 1.0 / 2 * 2 b. 0.25

iii. 0 % 10 * 10 c. 0

iv. 10 % 2 + 7 d. 0.5

 e. 7

 f. 1.0

10.2 Review Exercises
6. Regarding the previous exercise, which of the following results output statements are correct? Which one

would you choose to display the volume of the sphere on the user’s screen, and why?

a. print(V)

b. print(V cubic meters)

c. print(V, cubic meters)

d. print("The volume of the sphere is:" V)

e. print("The volume of the sphere is:", V)

f. print("The volume of the sphere is:", V, cubic meters)

g. print("The volume of the sphere is:", V, "cubic meters")

14.6 Review Exercises
3. Write a Python program that prompts the user to enter his or her name and then creates a secret

password consisting of three letters (in lowercase) randomly picked up from his or her name, and a
random four-digit number. For example, if the user enters “Vassilis Bouras” a secret password can
probably be one of “sar1359” or “vbs7281” or “bor1459”. Space characters are not allowed in the secret
password.

4. Write a Python program that prompts the user to enter a three-digit integer and then reverses it. For
example, if the user enters the number 375, the number 573 must be displayed. Solve this exercise
without using the integer quotient (//) and the integer remainder (%) operators.

15.9 How to Negate Boolean Expressions
For example, if the original Boolean expression is

x > 5 and y == 3

the negated Boolean expression becomes

x <= 5 or y != 3

However, there is a small detail that you should be careful with. If both and and or operators co-exist in a complex

Boolean expression, then the expressions that use the or operators in the negated Boolean expression must be

enclosed in parentheses, in order to preserve the initial order of precedence. For example, if the original Boolean
expression is

x >= 5 and x <= 10 or y == 3

the negated Boolean expression must be

(x < 5 or x > 10) and y != 3

If you forget to enclose the expression x < 5 or x > 10 in parentheses, since the and operator has a higher

precedence than the or operator, the expression x > 10 and y != 3 is evaluated first, which is wrong of course!

23.3 Review Exercises
4. The following Python program (not code fragment)

a = 5

total = total + a

print(total)

satisfies the property of effectiveness.

24.4 Review Exercises
14. The following Python program (not code fragment)

while True:

 print("Hello")

 i += 1

 if i > 10: break

satisfies the property of effectiveness.

25.5 Review Exercises
10. Write a Python program that lets the user enter an integer N and then calculates and displays the product

of the following:

P = 21 × 43 × 65 × … × 2N(2N−1)

18. Write a Python program that prompts the user to enter a real and an integer and then displays the result
of the first number raised to the power of the second number, without using either the exponentiation
operator (**) or the built-in pow() function of Python.

26.2-2 Counting the Total Number of Iterations

Find the number of times message “Hello” is displayed.

i = 1

while i <= 3:

 for i in range(4, -1, -1):

 print("Hello")

 i += 1

Solution

i ←1

i ≤ 3

i ← i + 1

False

For i in [4, 3, 2, 1, 0]

Write
“Hello”

True

27.3 The “Ultimate” Rule

You needed a Python program that lets the user enter three positive numbers, not four!

Exercise 30.12-1 Assigning a Value to a Non-Existing Key

Keep in mind though, if indian_tribes were actually a list, the last statement would certainly throw an error.

Take a look at the following code fragment

indian_tribes = ["Navajo", "Cherokee", "Sioux"]

indian_tribes[3] = "Apache"

At this point,
variable i contains
value 0

The nested loop control structure

Exercise 30.2-3 Designing Lists

In this exercise, you need a one-dimensional list for names, and a two-dimensional list for people’s weights.

Review in Loop Control Structures
Review Crossword Puzzle

Across

…

…

10. In this loop structure, the number of iterations is not known before the loop starts iterating.

30.4 How to Get Values from a One-Dimensional List
A negative step returns a list in reverse order

gods = ["Ares", "Hera", "Aphrodite", "Hermes"]

print(gods[::-1]) #It displays: ['Hermes', 'Aphrodite', 'Hera', 'Ares']

30.7 How to Add User-Entered Values to a One-Dimensional List
There is nothing new here. Instead of reading a value from the keyboard and assigning that value to a variable,
you can directly assign that value to a specific list element. The next code fragment prompts the user to enter the
names of four people, and assigns them to the elements at index positions 0, 1, 2, and 3, of the list names.

30.13 How to Iterate Through a Dictionary
Second Approach

Unfortunately, this approach cannot be used to alter the values of the elements of a dictionary. For example, if
you want to double the values of all elements of the dictionary salaries, you cannot do the following:

salaries = { "Project Manager": 83000,

 "Software Engineer": 81000,

 "Network Engineer": 64000,

 "Systems Administrator": 61000,

 "Software Developer": 70000

 }

for title, salary in salaries.items():

 salary *= 2

 Months

 0 1 2

Names =

John Thompson

Weights =

170 176 173 0

Ava Brown 100 101 99 1

Ryan Miller 130 130 130 2

Emma Moore 260 270 280 3

Alexis Taylor 120 121 122 4

Antony Harris 190 191 190 5

Alexander Lewis 110 115 112 6

Samantha Clark 190 195 193 7

Andrew Scott 200 210 212 8

Chloe Parker 105 109 107 9

March February January

People

30.15 Review Questions: True/False
35. If list b contains 30 elements (arithmetic values), the following code fragment doubles the values of all

of its elements.

for i in range(29, -1, -1):

 b[i] = b[i] * 2

30.16 Review Questions: Multiple Choice
10. If list b contains 30 elements (arithmetic values), the following code fragment

for i in range(29, 0, -1):

 b[i] = b[i] * 2

a. doubles the values of some of its elements.

b. doubles the values of all of its elements.

c. none of the above

30.17 Review Exercises
11. Fill in the gaps in the following trace table. In steps 6 and 7, fill in the name of a variable; for all other

cases, fill in constant values, arithmetic, or comparison operators.

Step Statement x y a[0] a[1] a[2]

1 a = [None] * 3 ? ? ? ? ?

2 x = …… 4 ? ? ? ?

3 y = x - …… 4 3 ? ? ?

4, 5

if x …… y:

 a[0] = ……

else:

 a[0] = y

4 3 1 ? ?

31.4 How to Add User-Entered Values to a Two-Dimensional List
Just as in one-dimensional lists, instead of reading a value entered from the keyboard and assigning that value to
a variable, you can directly assign that value to a specific list element. The next code fragment creates a two-
dimensional list names, prompts the user to enter six values, and assigns those values to the elements of the list.

31.9 Review Exercises
4 Try, without using a trace table, to determine the values that the list will contain when the following

code fragment is executed. Do this for three different executions. The corresponding input values are:
(i) 5, (ii) 9, and (iii) 3.

a = [[None] * 3 for i in range(2)]

x = int(input())

for i in range(2):

 for j in range(3):

 a[i][j] = (x + i) * j

5. Try, without using a trace table, to determine the values that the list will contain when the following
code fragment is executed. Do this for three different executions. The corresponding input values are:
(i) 13, (ii) 10, and (iii) 8.

a = [[None] * 3 for i in range(2)]

x = int(input())

for i in range(2):

 for j in range(3):

 if j < x % 4:

 a[i][j] = (x + i) * j

 else:

 a[i][j] = (x + j) * i + 3

32.3 Processing Each Column Individually
First Approach – Creating an auxiliary list

Now, nesting this code fragment in a for-loop that iterates for all columns results in the following.

total = [None] * COLUMNS

for j in range(COLUMNS):

 total[j] = 0

 for i in range(ROWS):

 total[j] += b[i][j]

Second Approach – Just find it and process it.

This approach uses no auxiliary list; it just calculates and directly processes the sum. The code fragment is as
follows.

for j in range(COLUMNS):

 total = 0

 for i in range(ROWS):

 total += b[i][j]

Accordingly, the following code fragment calculates and displays the average value of each column.

for j in range(COLUMNS):

 total = 0

 for i in range(ROWS):

 total += b[i][j]

 print(total / ROWS)

Exercise 32.4-1 Finding the Average Value of Two Grades

file_32_4_1

STUDENTS = 20

names = [None] * STUDENTS

grades_lesson1 = [None] * STUDENTS

grades_lesson2 = [None] * STUDENTS

for i in range(STUDENTS):

 names[i] = input("Enter student name No" + str(i + 1) + ": ")

 grades_lesson1[i] = int(input("Enter grade for lesson 1: "))

 grades_lesson2[i] = int(input("Enter grade for lesson 2: "))

#Calculate the average grade for each student

#and display the names of those who are greater than 89

for i in range(STUDENTS):

 total = grades_lesson1[i] + grades_lesson2[i]

 average = total / 2.0

 if average > 89:

 print(names[i])

32.8 Review Questions: True/False
15. The following code fragment displays the smallest value of list b.

b = [3, 1, 2, 10, 4, 12, 6]

print(sorted(b, reverse = True)[-1])

Exercise 33.3-7 Finding the Minimum and the Maximum Value of Each Row

file_33_3_7b

ROWS = 30

COLUMNS = 20

b = [[None] * COLUMNS for i in range(ROWS)]

for i in range(ROWS):

 for j in range(COLUMNS):

process total

 b[i][j] = float(input())

for i in range(ROWS):

 minimum = b[i][0]

 maximum = b[i][0]

 for j in range(1, COLUMNS):

 if b[i][j] < minimum:

 minimum = b[i][j]

 if b[i][j] > maximum:

 maximum = b[i][j]

 print(minimum, maximum)

Exercise 33.4-11 The Three Worst Elapsed Times

Using the “from inner to outer” method, the next code fragment sorts only the first row (row index 0) of the two-
dimensional list elapsed_times in descending order using the insertion sort algorithm. Assume variable i

contains the value 0.

for m in range(1, LAPS):

 element = elapsed_times[i][m]

 n = m

 while n > 0 and elapsed_times[i][n - 1] < element:

 elapsed_times[i][n] = elapsed_times[i][n - 1]

 n -= 1

 elapsed_times[i][n] = element

Now, in order to sort all rows, you need to nest this code fragment in a for-loop that iterates for all of them, as
follows.

for i in range(CARS):

 for m in range(1, LAPS):

 element = elapsed_times[i][m]

 n = m

 while n > 0 and elapsed_times[i][n - 1] < element:

 elapsed_times[i][n] = elapsed_times[i][n - 1]

 n -= 1

 elapsed_times[i][n] = element

file_33_4_11

…

…

 while n > 0 and elapsed_times[i][n - 1] < element:

Exercise 33.5-9 The Binary Search Algorithm – Searching in a Sorted One-Dimensional List

l
e
f
t

 m
i
d
d
l
e

 r
i
g
h
t

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

A = 12 15 19 24 28 31 39 41 44 53 57 59 62 64

 l
e
f
t

 m
i
d
d
l
e

 r
i
g
h
t

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

A = 12 15 19 24 28 31 39 41 44 53 57 59 62 64

 l
e
f
t

m
i
d
d
l
e

r
i
g
h
t

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

A = 12 15 19 24 28 31 39 41 44 53 57 59 62 64

Exercise 33.1-1 Creating a List that Contains the Average Values of its Neighboring Elements

Write a Python program that lets the user enter 100 positive numerical values into a list. Then, the program must
create a new list of 98 elements. This new list must contain, in each position the average value of the three elements
that exist in the current and the next two positions of the given list.

Solution

Let’s try to understand this exercise through an example using 10 elements.

 0 1 2 3 4 5 6 7 8 9

a = 5 10 9 2 4 12 11 1 0 11

 0 1 2 3 4 5 6 7

new_arr = 8 7 5 6 9 8 4 4

List new_arr is the new list that is created. In list new_arr, the element at position 0 is the average value of the

elements in the current and the next two positions of list a; that is, (5 + 10 + 9) / 3 = 8. The element at position 1

is the average value of the elements in the current and the next two positions of list a; that is, (10 + 9 + 2) / 3 = 7,

and so on.

Exercise 33.1-5 Creating Two Lists – Separating Positive from Negative Values

Note that the lists pos and neg contain a total number of pos_index and neg_index elements respectively. This

is why the two last loop control structures iterate until variable i reaches values pos_index – 1 and neg_index – 1,

respectively, and not until ELEMENTS – 1, as you may mistakenly expect. Obviously the sum of

pos_index + neg_index equals to ELEMENTS.

Exercise 33.4-9 Sorting One-Dimensional Lists While Preserving the Relationship with a Second List

Write a Python program that prompts the user to enter the total number of kWh consumed each month for a period
of one year. It then displays each number of KWh consumed (in descending order) along with the name of the
corresponding month. Use the selection sort algorithm.

Exercise 33.6-4 Display from Highest to Lowest Grades by Student, and in Alphabetical Order

There are 10 students and each one of them has received his or her grades for five lessons. Write a Python program
that prompts a teacher to enter the name of each student and his or her grades for all lessons.

35.2 How to Make a Call to a Function
Now, suppose that you want to calculate a result using the following expression

𝑦 = 𝑥3 +
1

𝑥

36.6 The Scope of a Variable
The next code fragment declares a global variable x, two local variables x and y within the void function

display_values(), and one local variable y within the void function display_other_values(). Keep in mind that

the global variable x and the local variable x are two different variables!

Exercise 37.2-3 Progressive Rates and Electricity Consumption

The LAV Electricity Company charges subscribers for their electricity consumption according to the following table
(monthly rates for domestic accounts).

Kilowatt-hours (kWh) USD per kWh

kWh ≤ 400 $0.08

401 ≤ kWh ≤ 1500 $0.22

1501 ≤ kWh ≤ 2000 $0.35

2001 ≤ kWh $0.50

38.8 Class Inheritance
If you want a class to inherit the class SchoolMember, it must be defined as follows

class Name(SchoolMember):

 def __init__(self, name, age [, …]):

 #Call the constructor of the class SchoolMember

 SchoolMember.__init__(self, name, age)

38.10 Review Exercises
3. Do the following

i. In the class Pet of the previous exercise

a. alter the constructor to accept initial values for the instance fields kind and legs_number

through its formal argument list.

b. add a property named kind. It will be used to get and set the value of the private field

kind. The setter must throw an error when the field is set to an empty value.

c. add a property named legs_number. It will be used to get and set the value of the private

field legs_number. The setter must throw an error when the field is set to a negative value.

ii. Write a Python program that creates one instance of the class Pets (for example, a dog) and then

calls both of its methods. Then try to set erroneous values for properties kind and legs_number

and see what happens.

Define additional fields for this class

Additional statement or block of statements

Define additional methods and/or properties for this class

